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Wave Functions in Geometric Quantization 
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A geometrical way is described to associate quantum states in the sense of 
geometric quantization to wave functions in the quantum mechanical sense for 
each relativistic elementary particle. Explicit computations are made in a number 
of cases: Klein-Gordon and Dirac equations, neutrino and antineutrino Weyl 
equations, and very general cases of massive and massless particles of arbitrary 
spin. In this later case one is led in a canonical way to Penrose wave equations. 

1. INTRODUCTION 

The wave equations of relativistic elementary particles, Klein-Gordon, 
Dirac, Maxwell, etc., were originally each derived independently. A unifica- 
tion resulted through the discovery of the relation of these equations with 
the representations of the Poincar6 group (inhomogeneous Lorentz group). 
The classification of the representations of the Poincar6 group made by 
Wigner (1939) with important contributions of Majorana (1932), Dirac (1936), 
and Proca (1936) led to the group-theoretic study of wave equations by 
Bargmann and Wigner (1948). 

In Kirillov-Kostant-Souriau theory (geometric quantization) the 
description of quantum system is given in terms of elements of the dual of 
the Lie algebra of the Lie group under consideration. Of course this way of 
seeing quantum mechanics is not completely independent of the preceding 
one, since it has its origin in a method of obtaining representations (Kirillov, 
1962; Auslander and Kostant, 1971). But the correspondence of quantum 
states in the sense of geometric quantization to wave functions in the quantum 
mechanical sense is not clear in all cases. Souriau (1970) gives a very general 
way to make the passage, but it does not work in all cases. For example, in 
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the relativistic case, not every quantum state for massive particles with 1/2 
spin corresponds to a solution of the Dirac equation. 

In this paper we give a geometrical construction that establishes a one- 
to-one correspondence from quantum states in the sense of geometric quanti- 
zation to wave functions in the quantum mechanical sense that is valid for 
all kinds of relativistic elementary particles. This solves in particular the 
preceding problem. The idea is as follows. 

In geometric quantization (GQ) one begins with a regular contact mani- 
fold or its associated Hermitian line bundle. Quantum states (in the sense of 
geometric quantification) can be considered as being the collection of those 
sections of the Hermitian line bundle which satisfy "Planck's condition" 
(Souriau, 1970). In this paper we see that these sections are in a one-to-one 
correspondence with the (unrestricted) sections of another Hermitian line 
bundle. Thus, this fiber bundle is a good setting to describe the quantum 
processes under consideration. The main idea for passing from this description 
to the usual one in terms of wave functions can be intuitively explained as 
follows. Quantum states in GQ attribute an "amplitude of probability" to 
each movement of the particle. To obtain the corresponding wave function 
one must proceed as follows: for each event, the corresponding amplitude 
of probability is obtained by taking all movements passing through the given 
event and then "adding up" (in a suitable sense) the corresponding amplitudes 
of probability. Of course, the concept of "movement passing through an 
event" is only obvious in the case of the ordinary massive spinless particle, 
and is defined in Section 3. 

In the case of massive particles one obtains solutions of Klein-Gordon 
and Dirac equations, and also a description of the wave functions for massive 
particles of higher spin. In the case of massless particles of spin 1/2 one 
obtains solutions of the Weyl equations and for general spin this method 
leads in a natural way to the description of massless particles by means of 
solutions of the Penrose wave equations (Penrose, 1975). 

2. UNIVERSAL COVERING GROUP OF POINCARI~ GROUP 

It is well known that the universal covering group of the Poincar6 group 
is a semidirect product of SL(2, C) by a four-dimensional real vector space. 
In this section, I recall some general facts about this group. 

Let (x ~, x 2, x 3, x 4) be the canonical coordinates in R 4, I the 2 × 2 unit 
matrix, and cr I, cr 2, cr 3 the Pauli matrices, i.e., 

(0 ~), (0 oi ) ,  (~ ? 1 )  

respectively. A generic point of R 4 will be denoted by x = (x l, x 2, x 3, x4). 
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We define an isomorphism h from R 4 onto the real vector space H(2) 
of the Hermitian 2 × 2 matrices by means of 

h(x) = x4I + i=l ~ xitri = ~ xl + ix2, x4 - x " ]  

We have Det h(x) = (x, d), where (,) is Minkowski pseudoscalar product 

3 
(x, y) = x4y 4 - ~ )ffyi 

i=1 

We define an action on the left of the Lie group SL(2, C) on the Abelian 
Lie group H(2) by means of 

A * H = ALIA* 

for all A E SL(2, C), H • H(2), where A* is the transpose of the complex 
conjugate of A. To this action by automorphisms of H(2) there corresponds 
a semidirect product, SL(2, C) q) H(2), whose group law is given by 

(a,  H) * (B, K) = (AB, AKA*  + H) 

The identity element is (I, 0) and (A, H) -1 = (A - l ,  - A - I H A * - I ) .  
This semidirect product acts on the left o n  R 4 by means of 

(A, 14) * x = h - l ( a h ( x ) A  * + H) 

The Poincar6 group ~ is identified with the closed subgroup of GL(5; R) 
composed of the matrices 

(o 
where C • R 4 and L • (~(3, 1) [such a matrix is denoted in the following 
simply by (L, C)]. 

For all (A, /4) • SL G H(2) [where SL stands for SL(2; C)], there 
exists a unique (L, C) • ~' such that (A, H) * x = L~ + C for all x • R 4. 

The map p from SL • H(2) into @ defined by sending such an (A, H) 
to the corresponding (L, C) is a homomorphism of Lie groups whose kernel 
consists of (I, 0) and ( - I ,  0). Since both Lie groups have the same dimension, 
p is a covering map of the identity component in ~ ,  ~ .  Since SL and H(2) 
are connected and simply connected, it follows that SL • H(2) is the universal 
covering group of ~ .  

The standard method to handle semidirect products enable us to identify 
the Lie algebra of SL • H(2) with sl X H(2), the Lie bracket being 

[(a, k), (a', k')] = ([a, a'], ak'  + k 'a* - (a 'k  + ka'*)] 
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In this paper, we use the basis of  si X H(2) composed of  the follow- 
ing elements: 

pk = (0, --o-k), k = 1, 2, 3 

tO4 ~____ (0,  0"4) = (0 ,  / )  

/ k = ( i  o-k )-~--,0 

The reason for this notation will become clearer in the next section. 
We denote by ~ the matrix i0-2, 

:/ 
Notice that 'A~.A = (Det A)~, so that 

~'Ae = - A  -l  (1) 

if A e SL. Also we have 

½ Tr(h(x)¢h(y)¢)  = - (x, y) 

for all x, y e R 4, where the bar means complex conjugation. 
We define a nondegenerate scalar product in sl x H(2) by means of  

((a, k), (b, l)) = 2 Re Tr(¼kel¢ - ab) 

= ½ Tr(k~2~) - 2 Re Tr ab 

This scalar product defines in the standard way an isomorphism from 
the Lie algebra of  SL • H(2) onto its dual. The image of  (a, k) • sl X H(2) 
will be denoted by {a, k}. 

With this notation, we obtain by a more or less straightforward computa- 
tion the following formula for the coadjoint representation (i.e., the contra- 
gredient of  the adjoint representation): 

Ad~.,~{a, k} = {AaA -1 + ¼(AkA*~H~ - HcAkA*~),  AkA*} (2) 

The elements of  the Lie algebra define functions on its dual in the well- 
known way. This is in particular the case of  P J, l i, gi and we have 

h(P({a,  k})) = - k  

h(l({a,  k}), 0) = i(a* - a) 

h(g({a,  k}), 0) = - ( a  + a*) 
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where P = (pt, p2, p3, p4), ~ = (l I, l 2, 13), and g = (gl, g2, g3). 
To end this section, we define two other functions on the dual of the 

Lie algebra of SL • H(2) whose physical meaning will become clearer in 
the next section. The main interest of these functions, at least from the group- 
theoretic point of view, is that they remain constant along coadjoint orbits. 

One of these is IPI, defined by IPl({a, k}) = Det(k). The other is 
defined in terms of W({a, k}) = i(ak - ka*). One can prove that 
W(Ad~.m{a, k}) = AW({a, k})A*, so that the function IWl({a, k}) = 
Det(W({a, k})) is constant along each coadjoint orbit. 

3. CLASSICAL STATE SPACE 

In this section we recall some known results and we establish some of 
the definitions and interpretations that are necessary for the purposes of this 
paper. Most of the known results can be found in Souriau (1970) in relation 
to the Poincar6 group. We use, instead of this group, the universal covering 
group of its components of the identity G = SL(2, C) ~ H(2). The results 
remain obviously valid. 

Let us consider a classical (without spin) relativistic free particle with 
rest mass m :/: 0. A classical state of this particle is given in each given 
inertial frame by the coordinates of an event and a value of momentum- 
energy. The set composed by these classical states (state space or evolution 
space) can be identified with a codimension- 1 submanifold of TM (or T'M), 
where M is Minkowski space-time. G acts transitively on the left on state 
space. 

The momentum map sends the state space onto a coadjoint orbit of G 
in a G-equivariant way. Each classical movement of this particle is composed 
by a set of classical states and the momentum map sends all of these states 
to the same point of the orbit in such a way that no other state is mapped 
to this point. In this way, the momentum map establishes a one-to-one map 
from movements of the particle and a coadjoint orbit. Thus the coadjoint 
orbit is identified with "movement space." The momentum map, accompanied 
by the projection on Minkowski space-time, gives, for each inertial observer, 
a G-equivariant imbedding of the state space into H(2) x G*. This enables 
us to identify the state space with an orbit of G in H(2) X G*. When this 
identification is done the momentum map becomes the canonical map of an 
orbit in H(2) X G* onto the corresponding orbit in G*. 

The elements pi, l k, g~ (see Section 2) of G give rise, via the momentum 
map, to dynamical variables on state space, whose expression in each inertial 
frame is the classical one for momentum, energy, and relativistic angular 
momentum (c = 1). 
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In the general case of particles with spin or massless particles, the 
concept of state space is much less clear a priori. Souriau defined its "evolu- 
tion spaces" as candidates. All of them are easily seen to be diffeomorphic 
to orbits of G in H(2) x G*. If one takes into account the possibility of 
changes of inertial frames, one is led a priori to consider as possible classical 
state spaces all the orbits of G in H(2) x G*. Thus, each classical state 
space projects onto a coadjoint orbit that is interpreted as the corresponding 
movement  space. A key fact of quantum theory is that we must consider as 
possible movement spaces only the coadjoint orbits that are quantizable in 
the sense of the next section. 

With this definition, the classical state space of a particle whose move- 
ment space is a given quantizable coadjoint orbit is to some extent undefined: 
there are infinitely many candidates. We shall see in the next section that 
the requirement that quantum mechanics be independent of the choice of 
classical state space leads to one of the essential axioms of geometric quantiza- 
tion: Planck's condition. 

When a concrete classical state space has been fixed, one can ask 
questions such as: Which is the family of events which represents a given 
movement in space-time? Which are the movements whose representation 
in space-time contains a given event? In order to explain this in more detail, 
let us consider an elementary particle whose movement space is the coadjoint 
orbit of tx e G* and let us choose its classical state space to be the orbit by 
G of (K, ct) in H(2) X G*, where K ~ H(2). The movement Add.rata is 
represented in space-time by the events L ~ H(2) such that (L, Ad&,met) is 
in state space, i.e., the orbit in space-time of K by (A, H). G~, where G~ is 
the isotropy subgroup of ct. The movements passing through an event H are 
the t3 such that (H, 13) is in state space. These 13 can also be easily characterized 
group theoretically. More specific computations are made in Section 5. 

The functions defined on each classical state space by pi, l k, gk are 
interpreted as giving momentum, energy, and angular momentum and are 
denoted by the same letter. With this interpretation, the mass square coincides 
with the function I PI defined in the preceding section. 

- 4 ,  

The Pauli-Lubanski four-vector corresponds to (P47 + p × g, 
{~, 7)), where p = (Pt, p2, p3). A more or less straightforward computation 
proves that the Hermitian matrix corresponding to this four-vector coincides 
with the W defined in Section 2. 

4. QUANTUM STATES 

In this section, we use a definition of quantum states of elementary 
particles that is equivalent to that of Souriau (1970, 1988), with a slightly 
different notation. We also prove some results that enable us to identify 
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quantum states with unrestricted sections of  a Hermitian line bundle instead 
of sections of another Hermitian line bundle subjected to the "Planck condi- 
tion" of Souriau. 

In order to carry out the geometric quantization of a symplectic manifold, 
one first needs a Boothby-Wang fibration on the symplectic manifold with 
circles as fibers, i.e., a principal circle bundle with connection whose curvature 
form (projected on the base space) is the symplectic form. 

Here we shall consider only the case where the symplectic manifold is 
the movement space of a relativistic elementary particle, i.e., a coadjoint 
orbit of the universal covering group of  the Poincar6 group, and the contact 
manifold is a homogeneous contact, for an action of the same group, such 
that the bundle projection becomes equivariant. 

In order to explain in more detail the geometric constructions we need, 
let us recall some results concerning the homogeneous contact manifolds 
under consideration. These results and a study of more general situations can 
be found in Souriau (1988) and Dfaz Miranda (1982a,b, n.d.). Some of  these 
generalizations also have interest from the point of view of the present paper. 
In fact, one can consider each covering of  a coadjoint orbit as a candidate 
for movement space, and the geometric construction that follows would 
remain valid. But for the purposes of this paper, it is enough to consider the 
coadjoint orbits themselves. In all that concerns fiber bundles, we use the 
notation of Kobayashi and Nomizu (1963). 

Let G be a Lie group. A fibration as desired on the coadjoint orbit of  
~ G* exists if and only if there exists a surjective homomorphism Ca 

from the isotropy subgroup at a ,  G,~, onto the unit circle S t whose differential 
is a. Then cx and its coadjoint orbit are said to be quantizable. Here, we can 
consider the differential of  a homomorphism onto S l as an ordinary l-form 
by identifying the Lie algebra of S t with R. This identification is defined by 
the condition that the exponential map becomes Exp(a) = e 2.'i~ for all a E 
R. The c~ and its coadjoint orbit are said to be R-quantizable if there exists 
a surjective homomorphism from G~ onto R whose differential is cx. The Lie 
algebra of R is identified with R in such a way that the exponential map 
becomes the identity. Of  course, if c~ is R-quantizable it is quantizable. Dfaz- 
Miranda (n.d.) uses a slightly more general concept of quantizability, but it 
is unnecessary for the purposes of the present paper. 

In what follows we assume that c~ is quantizable and C,~ is a homomor- 
phism from G~, onto the unit circle whose differential is o~. We identify the 
coadjoint orbit with G/G~ in the canonical way. 

We define an action of S t on G/KerC~ by means of 

(g KerC,,) * s = gh KerC,, (3) 

where h is any element of  G,~ such that Ca(h) = s. Actually (G/KerC,) 
(G/C~,, S t) is a principal fiber bundle, the bundle action being the preceding 
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one and the bundle projection being the canonical map from G/KerC,~ onto 
G/G~. 

The differential l-form ~ projects to an invariant contact form oJ on 
G/KerC~. 

Let Z(o~) be the vector field defined by iz(o,)to = 1, iz(,,) d t o =  0. All the 
integral curves of Z(o~) have the same period. If we denote by T(to) the period 
of any integral curve of Z(to), then o~/T(to) is a connection form. Since the 
structural group is Abelian, the curvature form is dto/T(to). There exists a 
unique 2-form on G/G,~ whose pullback under the bundle map is the curvature 
form. This form is symplectic and its cohomology class is integral. It will 
also be called a curvature form. Its reciprocal image under the canonical map 
of G onto G/G,~ is da/T(to). These symplectic manifolds and their covering 
spaces are Hamiltonian spaces of  the group G (Kostant, 1970). 

The horizontal lift of  curves can be described as follows. Given a curve 
3' in G/G,~, the horizontal lift of  3' to g KerC,, is 

t [0.tl 

where ~ is any lifting of V to G such that ~(0) = g, and the vertical bar 
means restriction. 

Associated to this principal fiber bundle and the canonical action of S 1 
on C, one can consider the one-dimensional vector bundle whose total space 
is (G/KerC, O Xs~ C. This bundle is a complex line bundle; the addition in 
each fiber is given by 

[g KerC,~, z] + [g'  KerC~, z'] = [g KerC,~, z + C~(g-lg')z '] 

and the multiplication by complex numbers is given by a.[g KerC,~, z] = 
[g KerC,~, az]. 

This vector bundle becomes Hermitian when one defines in each fiber 
the Hermitian product 

([g KerC,~, z], [g' KerC~, z']) = ~C~(g-lg')z ' 

It is well known that the sections of the Hermitian line bundle are in 
one-to-one correspondence with the functions on G/KerC~, f, such that f ( (g  
KerC~) * s) = s - l f ( g  KerC,0. These functions will be called pseudotensoriat 
functions. This correspondence is as follows. I f f i s  a pseudotensorial function, 
the corresponding section sends m e G/G~ to [r, f(r)] ,  where r is arbitrary 
in the fiber on m. If 0r is a section of the Hermitian line bundle, the correspond- 
ing pseudotensorial function f is defined by cr('rr(r)) = [r, f(r)]  for all r 
G/KerC~,, where q'r is the bundle projection. 
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The sections of the Hermitian line bundle are called prequantum states. 
Sometimes we use the same denomination for the corresponding pseudoten- 
sorial functions. 

Let us return to the case where G = SL(2, C) G H(2). As we saw in 
Section 3, there are many candidates for state space for the particle whose 
movement space is the orbit of ct. In fact, for each K e H(2), the orbit of 
(K, ct) e H(2) X G* is one of them. 

If state space is the orbit of (K, a)  and H • H(2), the movement 
containing the event H are the Ad~,c)a such that (A, L) * K = H, i.e., A • 
SL(2, C) and L = H - AKA*. This set depends on the choice of  K. 

We call quantum states those prequantum states that are independent of 
the preceding choice in the following sense. 

Since Ad~,H-axa.)et = Ad~-arA.t)Ad~a,mt~, we say that a prequantum 
state, considered as a section of the Hermitian line bundle, is independent 
of the choice of K if this value on the right-hand side of the preceding 
equation is independent, up to parallel transport, of the actual value of K, 
i.e., if ~b(Ad~.L?/) = "r(~b(~/)) for all "y in the orbit and L in H(2), where -r is 
parallel transport along any curve joining ~/with Ad&L?/in the orbit of ~/by 
the subgroup {I} x H(2). An equivalent statement of this condition is that 
the corresponding pseudotensorial function is constant along the horizontal 
lift of such a curve; thus we have the following. 

Definition 4.1. A quantum state is a prequantum state whose correspond- 
ing pseudotensorial function is constant along the horizontal lift of  any curve 
whose image is in an orbit of the subgroup {I} X H(2). 

Lemma 4.1. There exists a unique action of {I} X H(2) on G/KerC~ 
whose orbits are horizontal and such that "rr becomes equivariant. This action 
is given by 

(/, K) * ((A, H) KerC~) = ((A, H + K) KerC~) * 

exp [ -  iTr Tr(AkA*eKe)] (5) 

for all K • H(2), (A, H) • G, where * on the left-hand side stands for the 
new action and on the right-hand side corresponds to the bundle action, k is 
given by ~t = {a, k}. 

Proof Let us denote {I} X H(2) simply by H. If X • H, we denote by 
Xb the corresponding infinitesimal generator of the action on G/G~ and by 
X~' its horizontal lift to G/KerC~. Since the integral curves of X~" are horizontal 
lifts of integral curves of Xo, we see that X~' is a complete vector field. 

We shall prove that [X~, Y~'] = 0 for all X, Y • __H. 
First notice that [Xff, Yff] is horizontal. In fact, since X~' and Y~' are 

horizontal, we have to([X~', Y~]) = -do~(X~, Y~). Since d o  projects to the 
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symplectic form fl  of G/G¢, given by the projection under the canonical map 
of the 2-form of G, dct, we have 

(dco(X~, Y'~))(g KerC~) 

= (t)(Xb, Yb))(g G~,) 

= (da)(Adg-tX, Adg-I Y) = -a([Adg-xX, Adg-~ Y]) 

which vanishes since H is Abelian. 
Thus, [Xff, Y~'] coincides with its horizontal part, but the horizontal part 

of [X~', Yff] is the horizontal lift of [Xb, Yb] and H is Abelian. It follows that 
[X~', Y~'] is zero. 

As a consequence, the set composed of the X~', X E H, is an Abelian 
Lie algebra of complete vector fields on G/KerC~. Since H is simply con- 
nected, there exists a unique action of H on G/KerC~ whose infinitesimal 
generators are the X~'. The bundle map is equivariant for this action and the 
canonical one is the base space as a consequence of the fact that the infinitesi- 
mal generators X~" projects onto the corresponding ones Xb, and H is 
connected. 

Unicity follows from the fact that the infinitesimal generators of such 
an action must be the X~'. 

Now, let us prove equation (5). Let K E H(2), (A, H) ~ G. We consider 
the curve in G given by ~(t) = (I, tK)(A, H), the curve in G/G~ given by 
"y(t) = ~(t)G,, and the curve in G/KerC~ given by p(t) = (I, tK) * ((A, H) 
KetCh,), t E [0, I], where * stands for the action whose existence we have 
just proved, p(t) is contained in the orbit of (A, H) KerC, by I x H(2), so 
that it is horizontal, and projects onto (I, tK). ((A, H)G,0 = ~/(t). Thus, p(t) 
is the horizontal lift 5'(0 of ~/(t) to (A, H) KerC,~, so that it is given by equation 
(4). Since the left-hand member of (5) coincides with p(l), we only need to 
prove that 

f a = (1/2) Tr(AkA*~Ke) 

A direct computation proves that 

f e~ = (1/2) Tr(keA-IKA*-le) 

and thus the result is a consequence of equation (1). II 

This action will be called the horizontal action. 

Corollary 4.1. The quantum states are the prequantum states that corre- 
spond to pseudotensorial functions left invariant by the horizontal action. 
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The condition of being invariant by the horizontal action is equivalent 
to the Planck condition of Souriau. 

We shall see later that the canonical action of G on G/KerC~ maps 
horizontal orbits to horizontal orbits, thus giving a transitive action on the 
set consisting of these submanifolds. In order to describe the isotropy subgroup 
at the orbit of KerC,~, we define two homomorphisms as follows. 

Let rrj and "rr2 be the canonical projections of G on SL(2, C) and H(2), 
respectively. We denote -rq(G~) by (G~)sL and "rr2(G~) by (G,)H. 

Lemma 4.2. The map (C,0sL: (G~)sL ~ S I defined by 

(C~)sL(g) = C~(g, h)e - i~rTr~)  for all (g, h) ~ G,~ 

is well defined and a homomorphism. 

Proof Let h, h'  E H(2) be such that (a, h), (a, h ')  ~ G,~. Then (I, h - 
h') ~ G~, since it coincides with (a, h)(a, h') - l .  

But we have (L h) ~ G,~ if and only if keh~ = h~ke. Thus, if (I, h) E 
G~, the same holds for (I, th) for all t E R. As a consequence, (L h) is in 
the connected component of the identity G O of G,. Hence (I, h - h') 
Go 

Since the differential of C,~ is a,  we have 

C~(I, t(h - h')) = e 2~i'~°'h-h')) 

Thus 

e~'-r~(kff~)e -'~'r~k°7~ = C~( a, h ) . ( C~( a, h ') ) - l 

which proves that (C~)sL is well defined. It can be verified directly that it is 
a homomorphism. • 

We also define C'~,: (G~)sL ~ H(2) ,--, S I by means of 

C~(g, r) = (Cc~)Sl.(g)e i~rvr~k~) 

C',~ is an extension of  C,~ to (G~)sL G H(2) and a homomorphism. Its 
differential coincides with the restriction of a to the Lie algebra of this group. 

Proposition 4.1. The canonical action of  G on G/KerC~ maps horizontal 
orbits to horizontal orbits, thus defining a transitive action on the space of 
horizontal orbits. The isotropy subgroup at the horizontal orbit of KerC,~ 
is KerC,~. 

Proof Let (B, R) ~ G, K ~ H(2), and let us denote by ((B, R)-) and 
((L K)*) the diffeomorphisms associated to them by the canonical action and 
the horizontal action, respectively. We have 

((B, R)-) o ((L K)*) = ((/, BKB*)*) o ((B, R) . )  (6) 
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In fact, for all (A, H) ~ G we have 

((B, R)-) o ((I, K)*)((A, H) KerC,~) 

= ((B, R)(I, K)(A, H) KerC~) 

* e-i~rTr(A "kA*eK¢) 

= ((I, BKB*)(B, R)(A, H) KerC~) * e i~rTr('~kA*¢~) 

but, as a consequence of equation (1), we have • = B*•B = B--~•B, so that 

Tr(AkA*¢K•) = Tr(BAk(BA)*•BKB*•) 

and equation (6) follows. 
That the canonical action of  G on G/KerC,~ maps horizontal orbits to 

horizontal orbits is an obvious consequence of (6). 
An element (A, H) of G is in the isotropy subgroup of the horizontal 

orbit of KerC~ if and only if there exists K in H(2) and (B_R) in G~, such 
that (A, H) = (I, K)(B, R) and C~((B, R)) = exp[-i~Tr(k•K¢)]. But this is 
equivalent to saying that (A, H) is in (G,OsL ~) H(2) and 6"~(A, H) = 1. I 

As a consequence of  Proposition 4.1, we identify the space of horizontal 
orbits with G/Kerr'~. 

The canonical maps gives us the following homomorphism of principal 
S'-bundles: 

G/KerCa G/KerCol 

1 1 
G/Ge C/((Ge)sz. * H(21) ~ SL/(Ge)sL 

Since quantum states correspond to pseudotensorial functions left invari- 
ant by the horizontal action, they will be identified with unrestricted pseudo- 
tensorial functions on G/Kerr",~. 

5. WAVE FUNCTIONS 

In this section we give a way to pass from the quantum states described 
in the preceding section to a more standard way of looking at quantum 
processes: wave functions. 

A quantum state can be interpreted as giving an "amplitude of probabil- 
ity" to each movement. This interpretation is useful for improving intuition, 
although the values at different movements are located at different fibers. 

As mentioned in the introduction, the idea for obtaining wave functions 
is to "add up" the "amplitudes of probability" for all movements whose 
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representation in space-time contains each given event. Thus, our first task 
is to determine this set of movements. 

Let the orbit of a = {a, k} E G* be the movement space of a given 
elementary particle and let us choose the classical state space to be the 
orbit of (0, a) ~ H(2) × G*. In particular, we assume the existence of a 
homomorphism C,~ as in the preceding section and we use the notation therein. 

Our definition of quantum states has been motivated by the requirement 
that nothing essential in quantum mechanics depend on the fact that the 
classical states space be the orbit of (0, c~) or the orbit of (K, c0, with K :~ 
0. In Remark 5.2 at the end of the present section we explain the consequences 
of this choice. Since the isotropy subgroup at c~ is G,, and the isotropy 
subgroup at (0, o0 is (SLI f3 S/a) • {0}, where SLt = {A E SL(2, C): AaA -I 
= a}, S/a = {A E SL(2, C): AkA* = k}, the movement space will be 
identified in the canonical way with G/G~ and state space with H(2) • (SL/ 
(SLI n S/a)), where SL(2, C) has been denoted simply by SL. The natural 
map from the classical state space to the movement space thus becomes 

SL SL • H(2) 
(H, A SLI n S/a) ~ H(2) x ~ (A, H)G,~ E 

SL~ n S/a G~, 

The set consisting of the movements containing the event H is the image 
under the preceding map of {H} X SL/(SLI n S/a). The restriction of that 
map to that set is injective. We thus see that for each event the corresponding 
set of movements can be "parametrized" by the same homogeneous space: 
SL/(SLt n S/a). 

This is a particular case of the following construction. 
Let ~ be a closed subgroup of G, and 5 ° the subgroup of SL defined 

by 50 • {0} = ~ n (SL G {0}). Since G/(50 • {0}) is canonically diffeo- 
morphic to H(2) X (SL/50), we can identify these manifolds. When this 
identification is done, the canonical map from G/(50 ~ { 0 }) onto G/5£ becomes 

SL G 
(K, A50) E H(2) X -if- ,-* (A, K)~ E 

Notice that the restriction to the subset {H} x (SL/50) is injective. If ~ is 
an invariant closed subgroup of ~ ,  ~ n (SL G {0}) is an invariant closed 
subgroup of ~ n (SL • { 0}). 

This geometrical construction, when applied to each of the homogeneous 
spaces which appear in the commutative diagram of the preceding section, 
gives us the diagram of Fig. 1. 

The vertical arrows correspond to principal fiber bundles whose struc- 
tural groups are identified by means of (C, DsL, C',~, or C,~ to subgroups of S I. 
The bundle action on G/KerC~, is defined by the homomorphism C,~ in the 
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SL ,, G 
H ( 2 )  x K , r ( C . ) s L n S t . ,  ~ K , , C .  

\ / 
s t  q 

H(2) x K , , ( C ° ) s L  K , r ~ o  

1 1 
H ( 2 )  x (co)_~L " ( c . ) sL  

/ \ 
S L  .. . . . .  G H(2) x S L , n S L ~  ..................... G---£ 

Fig. 1. Fiber bundles for quantum states. 

way explained in the preceding section. The other bundle actions are defined 
by the corresponding homomorphisms in a similar way. The horizontal and 
oblique arrows define homomorphisms of principal fiber bundles. 

The second horizontal arrow will be denoted by ~. 
Notice that the energy-momentum, which is defined on movement space 

(i.e., on G/G~), is projectable to a function defined on SLI(G~)sL. Its projection 
will be also denoted by P and is given by P(A(G~)sL) = - A k A * .  

Proposition 5.1. The pullback by ~ maps in a one-to-one way the set of 
quantum states (considered as pseudotensorial functions on G/KerC',0 onto 
the set made up of the pseudotensorial functions on H(2) × SL/Ker(C~)sL of 
the form 

~b(H, A Ker(C~)sL ) 

= f (A  Ker(C~)sL) exp[i-rr Tr(P(A(G,)sL)eHe)] (7) 

where f is a pseudotensorial function on the principal fiber bundle 
SLIKer(C~)sL ~ SLI(G~)sL. 

Proof If B ~ (G~)sL, there exists K E H(2) such that (B, K) E G,~. 
Thus, equation (2) implies BkB* = k. As a consequence, the function defined 
on H(2) × SL/Ker(C~)sL by 
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×(H, A Ker(Co,)SL) = e i 'aTr(AkA*'r:~')  

is well defined. 
Let qb' be a pseudotensorial function on G/KerC',~. We have 

((d~ ' o L)x)(H, a Ker(Co,)st.) 

= qb'((A, H) KerC,~ * exp[-i ' rr  Tr(akA*~He]) 

= ~b'((A, H) KerC',~ * exp[-i ' rr  Tr(keA-tHa*-l~.)]) 

= ~b'((A, H) KerC,~ * C,~(I, -a-tHa*-t)) 

= +'((a ,  H)(I, - a - I H a  *-I)  KerC'a) 

= +'((A, 0) KerC',) 

We thus see that ((+'  o L)x)(H, A Ker(C,0sL) does not depend on H. Since it 
is pseudotensorial, it follows that qb -- qb' o ~. has the form (7). 

Conversely, let ~b be a function of  the form (7). Notice that the manifold 
that appears in the preceding diagram as H(2) × SL/Ker(C,,,)st.. was originally 
identified with G/(Ker(C,)sL • {0}). We consider it under this form, up to 
the end of  the present proof. For all A E SL(2, C), a ~ (Go,)sL, H, h ~. H(2) 
we have 

+((a, H)(a, h)(Ker(C,OsL ~ {0})) 

= +((aa, AhA* + H)(Ker(C,0sL • {0})) 

= f ( a a  Ker(C~)sL) 

× exp[-i ' rr  Tr(aaka*A*e_(AhA* + H)~)] 

= f ( a  Ker(C~,)sL * (Co,)st.(a)) 

× exp[ - i r r  Tr(AkA *64hA *~)] exp[-i ' rr  Tr(AkA *d-/~)] 

= f ( a  Ker(C,~)SL)((Co,)Sl..(a))-i 

× exp[-i ' rr  Tr(k~he)] exp[ - i r r  Tr(akA*~He)] 

= qb((A, H)(Ker(C,0sL @ {0})(C'~((a, h))) -I)  

This proves that + maps to a function on G/KerC'~, and that the projected 
function is pseudotensorial. I 

Thus, the quantum states are in a one-to-one correspondence with the 
pseudotensorial functions of  the form (7), and these with the pseudotensorial 
functions on G/Ker(C,~)st. 
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Let us denote (C~)sL((G~)sD by S, (H(2) x (SLlKer(C~,)sc) Xs C by W, 
and the canonical map from W onto H(2) × (SL/(G~)sD by 0. Here "q is the 
Hermitian line bundle associated to the principal fiber bundle (H(2) × (G/ 
Ker(C~)sD)(H(2) X (G/(G~)sD, S) and the canonical action of S on C. 

Proposition 5.1 enables us to interpret quantum states as sections of Xl. 
The interesting fact here is that these sections depend on two separate vari- 
ables, one of  them describing an event and the other the set of  orbits by {I} 
× H(2) of movements containing the event. 

To complete our connection to wave functions, we need to "represent" 
quantum states as functions with values in a fixed complex vector space. If 
(C~)sL is trivial, this is done directly since the corresponding fiber bundle is 
trivial, so that quantum states are identified with complex-valued functions 
on the base space. In the case where (C~)sL is not trivial, this will be done 
by imbedding the Hermitian fiber bundle in a trivial one. We do this in a 
direct way, but a more geometrical view of the method is given in Remark 5.1. 

By a trivialization of Ca we mean a triple (p, L, zo), where L is a finite- 
dimensional complex vector space, Zo • L, and p is a representation of  SL(2, 
C) in L such that: 

(1) p(A)(z0) = (C¢,)sL(A)zo, VA • (G,~)sL. 
(2) The isotropy subgroup at z0 is Ker(C,0sL. 

In what follows, we assume that a trivialization of C,~ is given. 
The orbit of Zo, ~ ,  will be identified with SL/Ker(C,,)sL and the canonical 

map onto SL/(G,OsL will be denoted by r. The pseudotensorial functions on 
SL/Ker(C,~)sc thus become functions on ~ ,  in fact, they correspond to the 
functions which are homogeneous of degree - 1  under multiplication by 
elements of  (C~)sL((G,~)sL) C S I. These functions will be called e~-homoge- 
neous of  degree - 1. The a-homogeneous functions of  degree - T are defined 
in a similar way. 

With this identification, one sees that each a-homogeneous function of  
degree - 1 gives rise to one of  the sections of  rl under consideration. 

We define a map ~ from W onto H(2) X (SL/(G~)sD X L by sending 
the equivalence class of 

((H, A Ker(C,,)sc), c) • (H(2) X (SL/Ker(C~)sL)) x C 

to (H, A(Ga)sc, cp(A)(zo)). 
This map is injective and its image will be denoted in what follows by ~ .  
Let us denote by ~1 the restriction to ~ of the canonical map from H(2) 

X (SL/(G~)sD X L onto H(2) X (SL/(G~)sL). The image by ~ of the fiber 
over (H, A(G~)sc) consists of the (H, A(G,)sL, cp(A)(zo)) with c E C. This 
set also coincides with ( 'rq)-I(H, A(G~,)sD. When one considers on °I/" the 
topology and differentiable structure which makes ~ a diffeomorphism, ~ is 
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the total space of a Hermitian line bundle whose bundle projection is ~rl and 
becomes an isomorphism of Hermitian line bundles over the identity of 

the base manifold. The fibers of w~ are one-dimensional subspaces of L. The 
sections of ~q are thus in a one-to-one correspondence with the sections of 
~r~, so that each c~-homogeneous function of degree - 1 defines a section of~r t. 

If f is an a-homogeneous function of degree - 1 ,  the corresponding 
section of "rr~ sends (H, m) to 

8([(H, z), f(z)ei~rTr(POn)Jn~)]) = (H, m, f(z)ei~TaPO"~H~Z) 

where z is an arbitrary element of r-I(m) C ~ .  
These sections are obviously in a one-to-one correspondence with the 

functions on H(2) × (SL(G~)sD with values in L given by its third components. 
The quantum state corresponding to the preceding f can thus be identified 
with the function d) F given by 

~f(H,  m) = f(z)ei~rrr~t'On)'-H~)Z 

where z E r-~(m). We shall call these functions prewavefunctions. 
The same name will be used, in the case in which (C~)sL is trivial, for 

the complex-valued functions of the form 

dJ[(H, m) = f (m)e i~rTr(P('n)~-~e) 

where now f is a function on SL/(G~)sL. 
The precise meaning of the prescription given at the beginning of this 

section to obtain wave functions is the following: to any given prewave 
function d~f one can associate a wave function (~f as follows: 

~i(x) = ~ ~'I(h(x), .)to 
Js LI(Ga)sL 

where to is an invariant volume element on SL(G~,)sL. 
This definition of wave functions forces us to make a restriction on the 

class of the functions to be considered: it is necessary that the integral exist. 
In the following we shall consider only quantum states corresponding 

to the case in whichf i s  continuous with compact support. The corresponding 
wave functions are analytic. 

Now we shall define a Hermitian product in the vector space consisting 
of these quantum states. Let dp and qb' be the quantum states corresponding 
to the prewave functions t~fand ~f, respectively. Let or and or' be the corres- 
ponding sections of "q. Since 

or(H, m) = [(H, z), f (z)e i~T~¢pO")'-~)] 

or'(H, m) = [(H, z), f ' (z)e  i~Tr<e~"~J4~)] 
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where z E r-I(m), the Hermitian product of cr(H, m) by ~r'(H, m) is f ( z ) f '  (z). 
In particular, it does not depend on H. This enables us to define the Hermitian 
product of the given quantum states (or the corresponding prewave functions) 
as being 

(Of, ~f') = [ ff'co 
J SLI(Ga)sL 

This Hermitian product can be given in terms of the prewave functions 
themselves as follows. Let qb be a sesquilinear form on L which does not 
vanish on ~ .  We define 

d~fOOf,: m ~ SL/(G,~)SL ~ oh(Of(H, m), Of(H, m)) 
• (z, z) 

where z is arbitrary in r-l(m) and H is arbitrary in H(2). Thus 

Js LI(GeL)SL 

The well-known fact that the vector space of wave functions is a represen- 
tation space of the group SL(2, C) • H(2) can be justified from our present 
point of view as follows. Since the group SL(2, C) G H(2) acts on H(2) and 
on L, there is a canonical representation of the group on the vector space 
composed of the maps from H(2) into L. The set of wave functions under 
consideration is an invariant subspace, so that we obtain a representation of 
the group SL(2, C) • H(2) in the space of wave functions. Let us denote 
the infinitesimal generator of this representation associated with X in the Lie 
algebra of SL(2, C) • H(2) by ~', and X/2ari by .~. Here X is a dynamical 
variable (see Section 3) and .~ is the corresponding operator in ordinary 
quantum mechanics. 

A direct computation leads to the following expressions for the operators 
corresponding to the canonical dynamical variables: 

1 0 
/3k.~f_ 2rri ax k ~f 

i 0 
13~4"~f-- 2q T OX4 ~Jf 

l + ~, ~,jrxJ ,: 

, ( o 
: .  c~ = 2,,--5 - ~ ~ + x~ *~ 
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where e;jk are the components of an antisymmetric tensor such that El2 3 = 

1, and, if a • sl(2, C), ~ means the infinitesimal generator of the action on 
L associated with a, considered as an endomorphism of L. 

As we have seen, quantum states can be considered as pseudotensorial 
functions of different principal fiber bundles, or sections of different Her- 
mitian line bundles, or prewave functions, or wave functions. Under each of 
these forms, the representation of the group SL(2, C) ~3 H(2) on quantum 
states has a natural description. 

The following sections are devoted to carrying out explicitly the con- 
structions considered in this section in a number of concrete cases. We take 
representatives of the coadjoint orbits that leads to what are usually accepted 
as physically meaningful particles and then we prove that the wave functions 
we obtain are solutions of the usual wave equations. The representatives 
we take of  the coadjoint orbits are the canonical ones obtained in Dfaz 
Miranda (n.d.). 

Remark 5.1. Let L be a finite-dimensional complex vector space and p 
a representation of a Lie group G in L. We denote by P(L) the projective 
space of L, i.e., the differentiable manifold of the one-dimensional complex 
subspaces of L. The representation of G on L induces canonically an action 
on P(L) by means of g * [z] = [p(g) 'z] for all g e G, z • L, where [z] 
represents the subspace of L generated by z. 

If L* = L - {0} and C* = C - {0}, then L*(P(L), C*), is a principal 
fiber bundle whose bundle projection is the canonical map defined by sending 
each nonzero element of L to the subspace of L it generates. 

Let "q: L* Xc, C ~ P(L) be the line bundle associated with this principal 
fiber bundle and the canonical action of C* on C. The total space of this 
vector bundle can be immersed in P(L) X L by means of  the map i defined 
by i([l, c]) = ([l], cl). Of course, the total space can also be considered as 
L* "completed with the zero section" in the sense that the map from L* U 
P(L) onto L* Xc, C defined by sending l • L* to [l, 1]~ and [/] • P(L) to 
[l, 0]~ is bijective. 

Now let Zo • L*, Gzo the isotropy subgroup at z0, and G[z~] the isotropy 
subgroup at [Zo]. Thus Gt:ol consists of the g e G such that p(g)'zo = Xz0 
for some h • C*. If such h is denoted by K(g), we obtain a homomorphism 
K from Gtzo] into C*. The isotropy subgroup at Zo is the kernel of K. 

Let H be a closed subgroup of G[:ol that contains G:o. We identify 
H/G:o with K(H) as groups in the canonical way, but we maintain the quotient 
topology and differentiable structure of H/Gzo. Now, G/Gzo(G/H, K(H)) is a 
principal fiber bundle and the maps ho: gG: o e G/G=o ~ p(g)'zo • L* and 
h: gH • G/H ~ [p(g)'z0] • P(L), whose images are the orbits of z0 and 
[Zo], respectively, define a bomomorphism of principal fiber bundles into 
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L*(P(L),  C*). One can immerse (G/G~) xx~ m C in G/H x L in the same 
way that L* Xc,  has been immersed in P(L)  x L: an immersion -r is defined 
by sending each [gG: o, c] to (gH, cp(g)'zo). 

On the other hand, there is a canonical action of G on (G/Gzo) Xxtm C 
given by g * [fGzo, c]xcm = [gfG~o, C]KIm. This action and the canonical one 
on G/H provide us with a representation of G on the vector space of  sections 
of  the line bundle v: (G/Gzo) xx~m C ,--. G/H. But "r gives an injective map 
from sections of  v into functions on GIH with values in L: if tx is a section 
of  v, the composite map "r ocr is a map of  the form u ~ (u, y(u)), so that 
the map defined by sending cr to y is injective. By means of this injective 
map, we transform our representation in a space of sections of an in general 
nontrivial bundle to a representation in a space of  functions with values in 
a fixed vector space. 

Our definition of  trivialization is such that G:o = Ker(C,,)sL, Gzo C 
(G~)sL C Gl:01 and the restriction of  K to (G~)sL coincides with (C~)sL. The 
geometrical construction we have done in this remark thus gives rise to the 
results stated in the main body of this section. 

Remark 5.2. If we choose the classical state space to be the orbit of (K, 
et) with K 4= 0 instead of  the orbit corresponding to K = 0, the wave functions 
we obtain are the same. In fact, the orbit of  (K, or) is the orbit of  (0, 
Ad~._mo0. Let us denote Ad~._met by et'. We have G~,, = a~t.-x)(G,O, where 
au._h o is the internal automorphism corresponding to (I, - K ) ,  i.e., act,_m((A, 
H)) = (L -K)(A,  H)(I, K). The form et' is also quantizable with C~,, = C,~ o 
au, m, and we obtain by straightforward computations KerC,,, = att,_to(KerC,~), 
(G,~,)SL = (G,,)SL, (C,,')SL = (C,OsL [use equation (1) to prove that Tr(ke(AKA* 
- K)e) = 0 if A ~ (G~)sL], C?~' = (7~ ° a(t,m, and KerC,~, = a~t_to(KerC~). 

We thus have the following commutative diagram: 

H(2) x SL/Ker(C,,)SL " G/KerC~, 

C / lie" H(2) x SL/(Ga)sL 

SL/(G~)sL 

where R is given by R(V Kerr",0 = V(I, K) Kerr",~, and defines an isomorphism 
of principal fiber bundles. Thus R establishes a one-to-one map from pseudo- 
tensorial functions to pseudotensorial functions. Two corresponding pseudo- 
tensorial functions gives rise to the same wave function. 



Wave Functions in Geometric Quantization 2159 

6. MASSIVE PARTICLES 

Let us consider a particle whose movement space is the coadjoint orbit of 

e~ = {O,"qml}, m E R ÷, "q = -+1 

This orbit is an R-quantizable orbit of the type 5, in the notation of 
Dfaz Miranda (n.d.). Here ( - ~ )  is the sign of energy, i.e., the sign of the 
value of the dynamical variable/>4 (see Section 3) at any point of the orbit. 

By direct computation, one sees that G,~ = {(A, h/): A ~ SU(2), h 
R}. The unique homomorphism onto R whose differential is a is given by 
C'(A, hi) = -'qmh. The unique homomorphism onto S ~ whose differential 
is e~ is given by C~(A, hi) = e -2rr in 'h .  Then we have ~'.(A, H) = e -~ri~mrrl'l, 

(G.)sL = SU(2), (C, OsL = 1, SLI = SLz = Ker(C~)sL = (G~)sL, so that in 
the commutative diagram of Fig. 1 the four spaces on the left are the same. 
Thus the diagram becomes 

SL H(2) x su(z) 

G / ff erCo 

G/Go 

Let ~m be the mass hyperboloid 

~ ' =  {H ~ H ( 2 ) : d e t H = m  2 , T r H > 0 }  

In 7£" we consider the action of SL(2, C) given by A * H = AHA*. 
This action is transitive. The isotropy subgroup at ml is SU(2), so that SL/ 
(G~)sL can be identified with ~ " .  The function P thus becomes P(K) = - r l K  
for all K E ~ m  
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An invariant volume element on ~ "  is given by 

1J = 
@~ ^ @2 ̂  @3 

[m 2 + ~/3=1 (pi(K))2] I/2 

where the p" are the coordinates corresponding to the following parametriza- 
tion of ~m: 

(p i ,  pZ, p3) • R3 ~ h(pJ, p2, p3, (m 2 + ~3=1 (pi)2)1/2) • ~,n 

Since (C~)sL is trivial, we need no trivialization in this case. The prewave 
functions have the form 

~f: (H, K) • H(2) × ~ "  ~ f(K)e -i~T~x~-~) 

where f is a continuous function on ~ "  with compact support. 
The corresponding wave function is 

~Ax) = L" ¢I(h(X)' ")v 

By direct computation one sees that these wave functions satisfy the Klein- 
Gordon equation. 

I f f '  is another function continuous with compact support on ~m, the 
Hermitian product of the quantum states corresponding to @f and I~/f, c an  
be written 

<% *r> = [~  *;'*r" 

Now let us consider a particle whose movement space is the coadjoint 
orbit of 

°t = { ~ (  1 __01), "qml } (8) 

where T • Z ÷, m • R +, ~1 = --+ 1. This orbit is a quantizable, not R-quantizable 
orbit, of type 5 in the notation of Dfaz Miranda (n.d.). 

In this case we have 

The unique homomorphism from G,~ onto S ~ whose differential is ct is given by 
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Then 

~):z~ S j} 

SLI 71 SL2 = (G~,)SL 

SLI fq Ker(C~)st. = Ker(C~)sL 

The commutative diagram becomes in this case 

S L  G 
H(2) x r e r ( C o ~ s L  K e r C .  

K~PC~ 

1 
S L  

(Go)SL 

5 L  .......... G 
I f (2)  x (co)sL C--~- 

The homogeneous space SL/(G,OsL can be characterized as follows. 
Let PI(C) be the complex projective space corresponding to C 2 [i.e., 

PI(C) consists of the one-dimensional complex subspaces of C2]. 
In ~'~ X PI(C) one can consider the action of SL(2, C) given by 

A * (H, [z]) -- (AHA*, [Az]) 

where [z] e PI(C) is the equivalence class of  x E C 2. 
The isotropy subgroup at (mI, [(4)]) is (G~)sL, so that, since the action 

is transitive, one can identity SL/(G~)sL with ~ "  X P~(C). 
Let us consider the 5-forrn in ~ "  x C 2 given by 

(zldz 2 - z2dz t) ^ (zldz z - z2dz I) 
(JXo)~x,z~ = v ^ 

where the z k axe the two canonical projections of  C 2 onto C. 
This differential form projects to an invariant volume element I~ in ~m 

X Pt(C) ,  
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In order to  describe prewave functions in the case T = I, one can 
consider the trivialization (p, C 4, Zo), where z0 is the transpose of (1, O, 1, 
O) and p is given by 

(A 0) 
p(A) = (A*)-l 

The orbit ~ of z0 is 

When one identifies SL/Ker(C~) with ~ and SU(G~)sL with ~ "  × 
P~(C) by means of the preceding actions the canonical map between these 
homogeneous spaces becomes a map r from ~ onto ~ "  X PI(C). By direct 
computation one sees that this map is given by 

r(z)=(m(ww*-~zz*~), [w]) 

Also we have 

s I r-n(K, [a]) = { (mK-,) 

P(K, [a]) = -qqK 

o } (ma,K-la)ll2" s ~ S I 

I f f  is a function on ~ which is continuous, has compact support, and 
is homogeneous of degree - 1 under multiplication by complex numbers of 
modulus one (i.e., c~-homogeneous of degree - 1), the corresponding prewave 
function is 

0.t': (H, K, [ a ] ) e  H(2) X ~ "  X Pl(C) '--'/Wle-i~mXr(Ke-H')(wt 
" \ z )  \ z ]  

where (w) is arbitrary in r-J(K, [a]). 
The corresponding wave function is 

f~¢. Of(h(X), ", ¢'I(x) = ,×,..c, 

When one considers the Dirac matrices in the representation 

,y4 __ (0 : ) ,  ,~/k = (0erk O crk), k =  1, 2,3 

one sees that these wave functions satisfy the Dirac equation 
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(~lVO~ - 27ri~m)~f = 0 

L e t f '  be another function on ~ which, like f,  is continuous, has compact 
support, and is homogeneous of degree - 1 under multiplication by complex 
numbers of  modulus one. A sesquitinear form on C 4 whose value on ~ is 
1 is defined by 

• (Z, Z' )  = ~Zl , ,vZ4 

Thus, the Hermitian product of the quantum states corresponding to qJf and 
q~I' (see Section 6) can be written 

( %  0s') = 

In order to give the wave functions in the case where T > 1, the following 
results are useful. 

Let or, a '  be quantizable elements of G* such that a '  is not R-quantizable, 
= = C r, Z ÷. (G,~)sL (G,~')st, and (C,~)SL ( ( , , ' ) S t )  where T • If (p, L, z0) is a 

trivialization of C,~,, we consider the triple (p®r, L®r z0Or), where 

(T (T 
L ®T = L ® " "  ® L, z°o T = Zo ® "'" ® Zo 

and p®r is the representation such that 

p®T(A)(zl @ "'" @ ZT) = p(A)(zl) @ "'" @ p(A)(ZT) 

Let us assume that (per  L®r, z0Or) is a trivialization of Ca and let ~ r  
be the orbit of z0 ~r. The pullback by z • ~ --~ z ®r • ~ r  establishes a one- 
to-one map from the set of the oL-homogeneous functions of degree - 1 onto 
the set of the a '-homogeneous functions of degree -71. I f f  is one of  these 
functions, the corresponding prewave function of particles corresponding to 

has the form. 

t~z( H, m) = f ( z)ei~Tr(e(m)d&)z®r 

where z • r- l(m).  

Lemma 6.1. If (G~)sL is connected, (per, L®r, z0~r) is a trivialization of C~,. 

Proo f  The only nontrivial fact is that the isotropy subgroup at Zo ° r  is 
contained in KerC,~. 

We shall first prove that (C~,)sL is surjective. In fact, since dim S ~ = 1, 
if (C~,)sc is not surjective we have d(C~,)st = 0. Since (G~,)st is connected, 
it follows that (C~')SL = 1. Thus C~,(g, r) = exp[i'rr Tr(ke?e)] for all (g, r) 
• G~,,, where k is given by ~x' = {b, k}. Then the map K from G,~, onto R 
given by K(g,  r) = (1/2) Tr(ke?e) is a homomorphism whose differential is 
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the same as the differential of C~,, i.e., or'. But this is contradictory with the 
hypothesis that or' is not R-quantizable. 

Let A be in the isotropy subgroup at Z~o r. Then there exists d • C such 
that p(A)(z0) = dzo and d r = 1. Since (C~,)sc is surjective, there exists B • 
(G~,)st such that (C,~,)sL(B) = d. Thus p(A)(zo) = p(B)(z0), so that B-IA • 
Ker(C~,)SL. Therefore, A e (G~,)SL, (C,,)sL(A) = d, and (C~,)sL(A) = 
d r =  t. • 

The same result holds under other hypotheses. In fact, if ed is quantizable 
and the cohomology class of the restriction of ed to the connected component 
of the identity of G~, is not zero, c~' is not R-quantizable (see Dfaz Miranda, 
n.d., Section 8) and a slight modification of the preceding argument proves 
the same result even though (G~,,)sL is not connected. 

In the case where ~x is given by (8) and e~' is the particular case corre- 
sponding to T = 1, the preceding lemma applies and one is led to the following 
prewave functions: 

Of: (H, K, [a]) e H(2) X ~m X PI(C) ~ f Z e-i~rqTrtr¢-HE) WZ 

where (~) is arbitrary in r-I(K, [a]) and f is a function on ~ ,  continuous, 
with compact support, and homogeneous of degree - T  under multiplication 
by complex numbers of modulus one. 

The wave functions are obtained by integration as usual. 

7. M A S S L E S S  P A R T I C L E S  

we consider particles whose movement space is the In this section 
coadjoint orbit of 

= f / × T [ '  o) (10)1 1 ''q 0 , X,'q e { + 1 } ,  T e  Z + 

These are quantizable, not R-quantizable orbits of type 4 in the notation 
of Dfaz Miranda (n.d.). 

Also in this case, G,~ is connected, so that there exists a unique homomor- 
phism from G,~ onto S ~ whose differential is a. In fact, we have 

G = { ( (  0 a)  ( i b ix'qT~z/2'rr)) } 
, XrlTaz/2,r r :z  • S t, b • R, a • C 

b z× r C,~(((~ z),(ix,q~az/2rriX'qT~z/2"rr))) = 
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(G~)sL 

z)) 
SLI 

s t  

= zx T 

I(0 °) } = I/a : a ~ C  

= (G,Ost 

The isotropy subgroup at (4 8) for the usual action of SL(2, C) on H(2) 
is (G~)sL. Thus SLI(G~)sL will be identified with the orbit of (o I °o), i.e., the 
future half-cone 

C + =  {H e H ( 2 ) : D e t H = 0 ,  T r H > 0 }  

When this identification is made, the function P on SL/(G~)sL becomes 
P(H) = --qH. 

An invariant volume element in C + is 

1 
tO = [~3=!  (pi)21112 MP | A dp 2 A dp 3 

where ( f ,  p2, pS) is the coordinate system corresponding to the 
parametrization 

[ ]% 
Before proceeding to the study of  the general use, we consider two 

particular ones. 
First we consider the case in which T = 1, × = 1, ~ = - 1. A trivialization 

is given by (p, C 2, (~)), where p(A) is multiplication by A. 
The orbit of (~) is C 2 - {0}. This space can thus be identified with SL/ 

Ker(C~)sL, so that one obtains a natural map r÷: C z - {0} ~ C +. This map 
is explicitly given by r÷(z) = zz* e C ÷ C H(2). Since z and e~ are eigenvectors 
of zz* corresponding to the eigenvalues Ilzl[ 2 and 0, respectively, r ; l (H)  is 
composed of the eigenvectors of H corresponding to the positive eigenvalue 
whose norm is that eigenvalue. 

The principal SLbundle whose projection is r÷ is related to the Hopf 
fibration as follows. The image of the restriction of r+ to the sphere S3(R) 
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= {Z • C2: Ilzll 2 = R 2} is composed of the elements of C + whose trace is 
R 2. Since the image of this subset by the preceding chart is the sphere of 
radius R2/2, we obtain maps from spheres S 3 onto spheres S 2. Each one of 
these mappings is, up to the radius and a reflection, the Hopf fibration. 

The prewave functions in this case have the form 

~ :  (N, H) • C + X H(2) ~ f(z)ei~rTaN~Tt~)Z • C 2 

where z is an arbitrary element of  r; t(N).  
By direct computation one can see that 

"1"- 0" 2 "t- O" 3 - -  + 0" 4 ( N ,  h(x)) = 0 0"10x ~ - ~  0~ 

The corresponding wave functions thus satisfy the same equation, which 
is the antineutrino Weyl equation (positive energy). 

I f f  and f '  are pseudotensorial functions, we have 

~f(N, H)**f,(N, H) = f (z)*f ' (z)  Tr N 

Thus, the Hermitian product of the corresponding quantum states (see Section 
5) can be written as follows: 

l Ic *?*r + ,£3  (pi)2 dp' dp 2 @3 

Now let us consider the case in which T = 1, X = - 1 ,  r I = - 1 .  One 
can use a trivialization similar to the preceding one, p(A) being multiplication 
by (A*) -1, thus obtaining a principal Sl-bundle C 2 - {0} ~ C ÷, where 
r-(z) = - e z z*e  • C + C H(2). Since z and d are eigenvectors of -ezz*e 
corresponding to the eigenvalues 0 and Uzll 2, respectively, r ,  I(H) is composed 
of the elements of the kernel of H whose norm is its positive eigenvalue. 

The wave functions one obtains in this case satisfy the Weyl equation 
that, according to Feynman, corresponds to the neutrino. 

The map from the real vector space C 2 onto itself defined by sending 
z to e~ is a complex structure and its restriction to C ~ - {0} gives us an 
isomorphism of the principal circle bundle corresponding to r_ (resp. r+) onto 
the principal circle bundle corresponding to r+ (resp. r_). The isomorphism of 
the structural group is defined by sending each element to its inverse. 

The results stated at the end of the preceding section enable us to describe 
the general case as follows. 

The prewave functions are given by functions on C 2 - {0} which are 
continuous with compact support and homogeneous of degree - T  under 
multiplication by modulus-one complex numbers. Let f r  be one of these 
functions. If × = 1, the corresponding prewave function is given by 
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0f~: (N,/-/) e C + × H(2) ~ fr(z)e-i~'rr(N~-g~)z®r e (C2) ®r 

where z is an arbitrary element of r¥1(N). 
In the case × = - 1 ,  the corresponding prewave function is 

~Jf~: (N, H) e C ÷ × H(2) ~ fT(z)e-i~r'aTr{N'~'~)z®r E (C2) ®r 

but now z is an arbitrary element of r=t(N). 
The associated wave functions satisfy Penrose's wave equations, which 

we describe here for the sake of completeness. 
Let us consider in (C2) ®r the basis 

(T 
{ e A ( ~ e B Q ' " : A , B  . . . .  e {1,2}} 

where {e~, e2} is the canonical basis of C ~. 
The prewave functions t ~  and the wave functions t ~  r have components 

in this basis which will be denoted by {t~m~ ' } and {~_+B._}, respectively. 
Let us consider the vector fields in R 4 given by 

VII = 

VI2 = 

V21 = 

1 

and, for al lA,  A' E {1,2},  

- i 

(j-x T+ i 

~AA'  .~. EAB~_A'B'VBB, 

(summation convention), where {e Ate} are the elements of  - e .  
We also define 

~J~B... = EAA'E'BB ' ' ' "  I~A+- 'B'''" 

~I~B.." = EAt,EB B . . . .  ~,A+'B'... 

where {CAB} are the elements of e. 
Thus we have for all h(x) e C + 

v A A ' ~ , B C . . . ( h ( x ) ,  " ) = 0 

vA'A~JA, BC.. .(h(x),  " ) = 0 
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so that, by derivation under the integral sign, we see that Penrose wave 
equations 

VA'~ '~,Bc = 0 

VA'A~A'BC.." = 0 

are satisfied. 
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